• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • Spanish
Go top
Paper information

Unstable Nonlocal Interface Dynamics

M. Nicoli, R. Cuerno, M. Castro

Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior.


Physical Review Letters Volume: 102 Issue: 25 Pages: 256102-1-256102-4

JCR Impact Factor and WoS quartile: 7.328 (2009); 8.385 - Q1 (2019)

DOI reference: DOI icon 10.1103/PhysRevLett.102.256102

Published on paper: .



Citation:
M. Nicoli, R. Cuerno, M. Castro. Unstable Nonlocal Interface Dynamics. Physical Review Letters. June 2009.


pdf Previsualizar
pdf Solicitar el artículo completo a los autores