Ir arriba
Información del Working Paper

The effect of wind generation and weekday on Spanish electricity spot price forecasting

A. Cruz, A. Muñoz, J. Zamora, R. Espínola

This paper empirically compares the predictive accuracy of a set of methods for day-ahead spot price forecasting in the Spanish electricity market. The methods come from time series analysis and artificial intelligence disciplines, and include univariate, multivariate, linear and nonlinear. Within the univariate methods, the double seasonal ARIMA and the recently proposed exponential smoothing for double seasonality are compared and used as benchmarks. They allow us to quantify the improvement on price forecasting when including explanatory variables or using more complex models. Dynamic regression models including the electricity load forecast are then considered. The good performance of these models in price forecasting has been pointed out by many authors. However, we find evidences of their predictive accuracy can be significantly outperformed by accounting the wind generation forecast provided by the System Operator. Moreover, these forecasts can be even more accurate if the variations of price’s behavior as the day of the week are taken into account by means of periodic models. The last of the tested methods are feed-forward neural networks used as multivariate nonlinear regression methods with universal function approximation capabilities. The influence of the wind generation forecast on price prediction is also proved through this method. Detailed out-of-sample results of all the tested methods are given.

Palabras clave: electricity markets, time series analysis, electricity price forecasting, periodic models.

Fecha de Registro: 20/07/2010


pdf Solicitar el artículo completo a los autores