• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo

Global path planning in Gaussian probabilistic maps

A. Sánchez, M.A. Sanz-Bobi

Journal of Intelligent & Robotic Systems Vol. 40, nº. 1, pp. 89 - 102

Resumen:
This paper is focused on path planning in environments modelled using continuous probabilistic maps, in particular, maps where obstacles are modelled using the sum of Gaussian distributions. Potential field and roadmap based methods are suitable for these type of maps, but they have some disadvantages. In order to attenuate the disadvantages of the previous methods, a new method has been proposed which is a mixture of them. It performs path planning based on a potential field taking into account a roadmap as a source of potential. Besides, some experiments have been done in order to compare the performance of them.


Palabras Clave: Roadmap, potential field, probabilistic maps, path planning, Gaussian distribution, neural network


Índice de impacto JCR y cuartil WoS: 0.254 (2004); 2.646 - Q2 (2020)

Referencia DOI: DOI icon 10.1023/B:JINT.0000034339.13257.e6

Publicado en papel: Mayo 2004.



Cita:
A. Sánchez, M.A. Sanz-Bobi. Global path planning in Gaussian probabilistic maps. Journal of Intelligent & Robotic Systems. Vol. 40, nº. 1, pp. 89 - 102, Mayo 2004.


    Líneas de investigación:
  • *Robots móviles y visión artificial

pdf Previsualizar
pdf Solicitar el artículo completo a los autores