• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo

Abnormal behavior detection using dominant sets

M. Alvar, A. Torsello, A. Sánchez, J.M. Armingol Moreno

Machine Vision and Applications Vol. 25, nº. 5, pp. 1351 - 1368

Resumen:
Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K -Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5 points lower than the others.


Palabras Clave: Dominant sets; Abnormal behavior; Behavior analysis; Computer vision;


Índice de impacto JCR y cuartil WoS: 1.351 - Q2 (2014); 2.012 - Q3 (2020)

Referencia DOI: DOI icon 10.1007/s00138-014-0615-4

Publicado en papel: Julio 2014.

Publicado on-line: Mayo 2014.



Cita:
M. Alvar, A. Torsello, A. Sánchez, J.M. Armingol Moreno. Abnormal behavior detection using dominant sets. Machine Vision and Applications. Vol. 25, nº. 5, pp. 1351 - 1368, Julio 2014. [Online: Mayo 2014]


    Líneas de investigación:
  • *Robots móviles y visión artificial
  • *Análisis de Seguridad

pdf Previsualizar
pdf Solicitar el artículo completo a los autores