• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo

DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant

A.L. Arranz, A. Cruz, M.A. Sanz-Bobi, P.R. Castelló, J. Coutiño

Expert Systems with Applications Vol. 34, nº. 4, pp. 2267 - 2277

Resumen:
DADICC is the abbreviated name for an intelligent system able to detect on-line and diagnose anomalies as soon as possible in the dynamic evolution of the behaviour of a power plant based on a combined cycle gas turbine. In order to reach this objective, a modelling process is required for the characterization of the normal performance when any symptom of a possible fault is present. This will be the reference for early detection of possible anomalies. If a deviation in respect to the normal behaviour predicted is observed, an analysis of its causes is performed in order to diagnose the potential problem, and, if possible, its prevention. A multi-agent system supports the different roles required in DADICC. The detection of anomalies is based on agents that use models elaborated using mainly neural networks techniques. The diagnosis of the anomalies is prepared by agents based on an expert-system structure. This paper describes the main characteristics of DADICC and its operation.


Palabras Clave: Anomaly detection; Normal behaviour; Diagnosis; Multi-agent system; Neural network; Expert system


Índice de impacto JCR y cuartil WoS: 2.596 (2008); 6.954 - Q1 (2020)

Referencia DOI: DOI icon 10.1016/j.eswa.2007.03.005

Publicado en papel: Mayo 2008.



Cita:
A.L. Arranz, A. Cruz, M.A. Sanz-Bobi, P.R. Castelló, J. Coutiño. DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant. Expert Systems with Applications. Vol. 34, nº. 4, pp. 2267 - 2277 Mayo 2008.


    Líneas de investigación:
  • *Predicción y Análisis de Datos
  • *Modelado, Simulación y Optimización
  • *Inteligencia artificial aplicada al mantenimiento, diagnóstico y fiabilidad

pdf Previsualizar
pdf Solicitar el artículo completo a los autores