• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo

Cluster analysis of seriously injured occupants in motor vehicle crashes

R. Suárez del Fueyo, M. Junge, F.J. López-Valdés, S.H. Clay Gabler, L. Woerner, S. Hiermaier

Permanent monitoring of real-world crashes is important to identify injury patterns and injury mechanisms that still occur in the field despite existing regulations and consumer testing programs. This study investigates current injury patterns at the MAIS 3+ level in the accident environment without limiting the impact direction. The approach consisted of applying unsupervised clustering algorithms to NASS-CDS crash data in order to classify seriously injured, belted occupants into clusters based on injured body regions, biomechanical characteristics and crash severity. Injury patterns in each cluster were analyzed and associated with other characteristics of the crash, such as the collision configuration. The groups of seriously injured occupants found in this research contain a large amount of information and research possibilities. The resulting clusters represent new opportunities for vehicle safety, which have been highlighted in this study.


Accident Analysis & Prevention. Volumen: 151 Número: 105787 Páginas: 1-12

Índice de impacto JCR y cuartil WoS: 3.655 - Q1 (2019)

Referencia DOI: DOI icon 10.1016/j.aap.2020.105787    

Publicado en papel: Marzo 2021. Publicado on-line: Enero 2021.



Cita:
R. Suárez del Fueyo, M. Junge, F.J. López-Valdés, S.H. Clay Gabler, L. Woerner, S. Hiermaier. Cluster analysis of seriously injured occupants in motor vehicle crashes. Accident Analysis & Prevention. vol. 151, no. 105787, pp. 1-12, Marzo 2021. [Online: Enero 2021]


    Líneas de investigación:
  • Biomecánica
  • Movilidad sostenible y vehículos eléctricos