Ir arriba
Información del artículo

Neural network models to detect airplane near-collision situations

R. Palacios, A. Doshi, A. Gupta, V. Orlando, B.R. Midwood

The US Federal Aviation Administration (FAA) has been investigating early warning accident prevention systems in an effort to prevent runway collisions. One system in place is the Airport Movement Area Safety System (AMASS), developed under contract for the FAA. AMASS internal logic is based on computing separation distances among airplanes, and it utilizes prediction models to foresee potential accidents. Research described in this paper shows that neural network models have the capability to accurately predict future separation distances and aircraft positions. Accurate prediction algorithms integrated in safety systems such as AMASS can potentially deliver earlier warnings to air traffic controllers, hence reducing the risk of runway accidents even further. Additionally, more accurate predictions will lower the incidence of false alarms, increasing confidence in the detection system. In this paper, different incipient detection approaches are presented, and several prediction techniques are evaluated using data from one large and busy airport. The main conclusion is that no single approach is good for every possible scenario, but the optimal performance is attained by a combination of the techniques presented.


Palabras clave: Airport traffic management; collision avoidance; prediction models; neural networks


Transportation Planning and Technology. Volumen: 33 Numero: 3 Páginas: 237-255

Índice de impacto JCR y cuartil Scopus: JCR impact factor: 0.411 (2010); 0.893 (2018).

Referencia DOI: DOI icon 10.1080/03081061003732300    

Publicado en papel: Abril 2010.



Cita:
R. Palacios, A. Doshi, A. Gupta, V. Orlando, B.R. Midwood. Neural network models to detect airplane near-collision situations. Transportation Planning and Technology. vol. 33, no. 3, pp. 237-255, Abril 2010.


    Líneas de investigación:
  • *Predicción y Análisis de Datos

pdf  Previsualizar
pdf Solicitar el artículo completo a los autores



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800