Ir arriba
Información del artículo

Improving the B&B search for large-scale hydrothermal weekly scheduling problems

E. Parrilla, J. García-González

This paper presents an optimization based algorithm to solve the weekly scheduling problem of a large-scale hydrothermal power system, formulated as a mixed-integer linear programming model (MILP). The main drawback of the MILP approach is the high computational burden required to solve large-size problems. The proposed algorithm tackles this problem by providing an initial feasible and integer solution, which enhances the search of the Branch and Bound (B&B) over the space of feasible solutions, reducing the resolution time. A detailed representation of thermal, pumped storage, and hydroelectric units is considered, taking into account the net head dependence of hydro plants by means of an underrelaxed iterative process. The presented algorithm has been applied to real-scale study cases, obtaining satisfactory results in computational time and optimality.


Palabras clave: Large-scale hydrothermal scheduling; Head dependent reservoirs; Mixed-integer linear programming


International Journal of Electrical Power & Energy Systems. Volumen: 28 Número: 5 Páginas: 339-348

Índice de impacto JCR y cuartil WoS: 0.232 - Q1 (2006); 4.418 - Q1 (2018)

Referencia DOI: DOI icon 10.1016/j.ijepes.2005.12.008    

Publicado en papel: Junio 2006.



Cita:
E. Parrilla, J. García-González. Improving the B&B search for large-scale hydrothermal weekly scheduling problems. International Journal of Electrical Power & Energy Systems. vol. 28, no. 5, pp. 339-348, Junio 2006.


    Líneas de investigación:
  • *Programación de la Operación a Corto Plazo, Elaboración de Ofertas y Análisis de Reservas de Operación

pdf  Previsualizar
pdf Solicitar el artículo completo a los autores



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800