Ir arriba
Información del artículo en conferencia

Building supply functions under uncertainty for a day-ahead electricity market

J. García-González, J. Barquín, J. Román

In this paper we present a new methodology to find the optimal bids for a day-ahead electricity market. A portfolio analysis is developed in order to obtain the set of 24 supply functions that the generating utility should submit to maximise its expected profit. As all participants submit their bids simultaneously, the generating utility does not know its competitors and demand bids. However, we assume that historical data analysis and market experience can provide an arbitrary number of residual demand scenarios. For each scenario, profit is maximised deterministically taking into account the thermal units constraints. The solution provides an optimal pair quantity-price for each hour. Repeating the process for every scenario, each hour will contain a set of profit-maximising points. We propose to build the hourly supply functions by finding the piece-wise linear approximation of the scatterplot formed by these optimal points. A numerical example is presented where the proposed methodology has been applied to a real size hypothetical case.


Palabras clave: Deregulated power system, Bidding, Residual demand, Uncertainty.

PMAPS2000: 6th International Conference on Probabilistic Methods Applied to Power Systems, Funchal, Madeira (Portugal). 25 septiembre 2000

Fecha de publicación: septiembre 2000.



Cita:
J. García-González, J. Barquín, J. Román, Building supply functions under uncertainty for a day-ahead electricity market, PMAPS2000: 6th International Conference on Probabilistic Methods Applied to Power Systems. ISBN: 972-95194-1-2, Funchal, Portugal, 25-28 Septiembre 2000


    Líneas de investigación:

IIT-00-006A

pdf Solicitar el artículo completo a los autores



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800