Ir arriba
Información del artículo

Robust solutions using fuzzy chance constraints

F.A. Campos, J. Villar, M. Jiménez

It is well known that optimization problems for decision-making process in real environments should consider uncertainty to attain robust solutions. Although this uncertainty has been usually modelled using probability theory, assuming a random origin, possibility theory has emerged as an alternative uncertainty model when statistical information is not available, or when imprecision and vagueness have to be considered. This paper proposes two different criteria to obtain robust solutions for linear optimization problems when the objective function coefficients are modelled with possibility distributions. To do so, chance constrained programming is used, leading to equivalent crisp optimization problems, which can be solved by commercial optimization software. A simple case example is presented to illustrate the use of the proposed methodology.


Palabras clave: Robustness, Possibility theory, Fuzzy linear programming, Chance constraints


Engineering Optimization. Volumen: 38 Numero: 6 Páginas: 627-645

Índice de impacto JCR y cuartil Scopus: JCR impact factor: 0.519 (2005); 1.809 (2018).

Referencia DOI: DOI icon 10.1080/03052150600603165    

Publicado en papel: Septiembre 2005.



Cita:
F.A. Campos, J. Villar, M. Jiménez. Robust solutions using fuzzy chance constraints. Engineering Optimization. vol. 38, no. 6, pp. 627-645, Septiembre 2005.


    Líneas de investigación:

pdf  Previsualizar
pdf Solicitar el artículo completo a los autores



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800