Ir arriba
Información del artículo

Pseudospectral versus finite-difference schemes in the numerical integration of stochastic models of surface growth

R. Gallego, M. Castro, J.M. López

We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi, and Zhang model (KPZ) and the Lai, Das Sarma, and Villain model (LDV). The pseudospectral method appears to be the most stable for a given time step for both models. This means that the time up to which we can follow the temporal evolution of a given system is larger for the pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the predictions of the continuum model than those obtained through finite difference methods. On the other hand, some numerical instabilities appearing with finite difference methods for the LDV model are absent when a pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling observed in earlier numerical simulations. With the pseudospectral approach no multiscaling is seen in agreement with the continuum model.

Palabras clave: parisi-zhang equation, scale-invariance, kinetic-growth, instability, interfaces, continuum, universality, relaxation, diffusion

Physical Review E. Volumen: 76 Numero: 5 Páginas: 051121.1-051121.9

Índice de impacto JCR y cuartil: 2.483 (2007); 2.284 (2017).

Referencia DOI: DOI icon 10.1103/PhysRevE.76.051121    

Publicado en papel: Noviembre 2007.

    Líneas de investigación:

Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800