Ir arriba
Información del artículo

Detection of jihadism in social networks using big data techniques supported by graphs and fuzzy clustering

C. Sanchez-Rebollo, C. Puente, R. Palacios, C. Píriz, J.P. Fuentes, J. Jarauta Sanchez

Social networks are being used by terrorist organizations to distribute messages with the intention of influencing people and recruiting new members. The research presented in this paper focuses on the analysis of Twitter messages to detect the leaders orchestrating terrorist networks and their followers. A big data architecture is proposed to analyze messages in real time in order to classify users according to different parameters like level of activity, the ability to influence other users, and the contents of their messages. Graphs have been used to analyze how the messages propagate through the network, and this involves a study of the followers based on retweets and general impact on other users. Then, fuzzy clustering techniques were used to classify users in profiles, with the advantage over other classifications techniques of providing a probability for each profile instead of a binary categorization. Algorithms were tested using public database from Kaggle and other Twitter extraction techniques. The resulting profiles detected automatically by the system were manually analyzed, and the parameters that describe each profile correspond to the type of information that any expert may expect. Future applications are not limited to detecting terrorist activism. Human resources departments can apply the power of profile identification to automatically classify candidates, security teams can detect undesirable clients in the financial or insurance sectors, and immigration officers can extract additional insights with these techniques.


Palabras clave:


Complexity. Volumen: 2019 Numero: 1238780 Páginas: 1-13

Índice de impacto JCR y cuartil Scopus: JCR impact factor: 2.591 (2018)

Referencia DOI: DOI icon 10.1155/2019/1238780    

Publicado en papel: Marzo 2019. Publicado on-line: Marzo 2019.



Cita:
C. Sanchez-Rebollo, C. Puente, R. Palacios, C. Píriz, J.P. Fuentes, J. Jarauta Sanchez. Detection of jihadism in social networks using big data techniques supported by graphs and fuzzy clustering. Complexity. vol. 2019, no. 1238780, pp. 1-13, Marzo 2019. [Online: Marzo 2019]


    Líneas de investigación:
  • Tecnologías de la Información y Comunicación (TIC)

Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800