Ir arriba
Información del artículo

Automatic specification of piecewise linear additive models: application to forecasting natural gas demand

A. Gascon, E.F. Sánchez-Úbeda

When facing any forecasting problem not only is accuracy on the predictions sought. Also, useful information about the underlying physics of the process and about the relevance of the forecasting variables is very much appreciated. In this paper, it is presented an automatic specification procedure for models that are based on additivity assumptions and piecewise linear regression. This procedure allows the analyst to gain insight about the problem by examining the automatically selected model, thus easily checking the validity of the forecast. Monte Carlo simulations have been run to ensure that the model selection procedure behaves correctly under weakly dependent data. Moreover, comparison over other well-known methodologies has been done to evaluate its accuracy performance, both in simulated data and in the context of short-term natural gas demand forecasting. Empirical results show that the accuracy of the proposed model is competitive against more complex methods such as neural networks.


Keywords: Generalized additive models; Prediction; Natural gas demand; Short-term forecasting; Piecewise linear models; Nonlinear modeling


Statistics and Computing. Volumen: 28 Numero: 1 Páginas: 201-217

Journal Impact Factor: JCR impact factor 1.851 (2017)

DOI reference: DOI icon 10.1007/s11222-017-9726-x    

Publicado en papel: Enero 2018. Publicado on-line: Enero 2017.


    Líneas de investigación:
  • *Predicción y Análisis de Datos

pdf  Previsualizar
pdf Solicitar el artículo completo a los autores



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800