Ir arriba
Información del artículo en conferencia

An experimental and numerical study of the smoke ventilation in atrium fires under dynamic ventilation performance

P. Ayala, A. Cantizano, C. Gutiérrez

10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics - HEFAT2014, Orlando (Estados Unidos de América). 14-16 julio 2014


Resumen:
Smoke control systems whitin fire safety designs are being commonly investigated by means of computation fluid dynamics (CFD) models due to the increment of accuracy and computational speed. This paper presents a full-scale experimental and numerical comparison of atrium fires of2.3-2.7 MW and 5.1-5.3 MW using Fire Dynamic Simulator (FDSv6). Results from six different fire tests with dynamic and constant exhaust flow rates during the fire are presented. Different mesh element sizes as well as turbulence models (Deardorff, Dynamic Smagorinsky and Smagorinsky models) assesing the smoke layer interface are compared presenting differences in the steady state of 20% and 10% respectively. A good agreement is obtained numerically, being the average relative error during the whole experiment of 12% and 17% in low and high heat release rates, respectively. Finally, the smoke layer has been well predicted not only under constant flow rates but also under dynamic flow rates, being the numerical temporal response to the exhaust changes conducted slower than the experimental one.


Fecha de publicación: julio 2014.



Cita:
Ayala, P., Cantizano, A., Gutiérrez, C., An experimental and numerical study of the smoke ventilation in atrium fires under dynamic ventilation performance, 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics - HEFAT2014, Orlando (Estados Unidos de América). 14-16 julio 2014.


    Líneas de investigación:
  • *Sistemas Energéticos: Transmisión de Calor, Mecánica de Fluidos, Termoelectricidad, Máquinas Térmicas e Hidráulicas, Ahorro y Eficiencia Energética

IIT-14-074A

pdf Solicitar el artículo completo a los autores