• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo en conferencia

Failure risk analysis and maintenance effectiveness in a windturbine according to its history of unavailability and applied maintenance

M.A. Sanz-Bobi, R.J. Andrade Vieira, X. Montilla

20th Annual European Safety and Reliability Conference, Troyes (Francia). 18 septiembre 2011


Resumen:

The current practice of maintenance applied to existing windturbines is based on periodical preventive maintenance actions recommended by their manufacturers. In most cases, this maintenance is applied without paying special attention to the real and local life of the windturbines: weather conditions at the location, stress caused by over-load, hours continuously working, etc. These factors determine the particular life of every windturbine and the maintenance applied must be planned taking them into account. This paper proposes a new method that, using a unique model named MAOL, integrates an evaluation of possible failure risk of a windturbine according to the historical unavailabilities which have occurred with an analysis about the effectiveness of the applied maintenance. A new tool has been developed for supporting these studies and its main features will be described. This tool can be used to simulate possible faulty scenarios and their impact on the life of the windturbine.


Publicado en Advances in Safety, Reliability and Risk Management, pp: 853-860, ISBN: 978-0-415-68379-1

Fecha de publicación: septiembre 2011.



Cita:
M.A. Sanz-Bobi, R.J. Andrade Vieira, X. Montilla, Failure risk analysis and maintenance effectiveness in a windturbine according to its history of unavailability and applied maintenance, 20th Annual European Safety and Reliability Conference - ESREL 2011, Troyes (Francia). 18-22 Septiembre 2011. En: Advances in safety, reliability and risk management, ISBN: 978-0-415-68379-1


    Líneas de investigación:
  • *Predicción y Análisis de Datos
  • *Inteligencia artificial aplicada al mantenimiento, diagnóstico y fiabilidad

IIT-11-151A

pdf Solicitar el artículo completo a los autores