• Plataforma de vídeos del IIT
  • Twitter
  • LinkedIn
  • Asociación de Ingenieros del ICAI
  • Intranet
  • English
Ir arriba
Información del artículo en conferencia

Fast Position Estimation for Autonomous Mobile Robot Navigation

A. Sánchez, M.A. Sanz-Bobi

2002 WSEAS Int. Conf. on Signal Processing, Robotics and Automation (ISPRA '02), Cádiz (España). 12 junio 2002


Resumen:
One of the problems in mobile robotics is the estimation of the robot position in the environment. In this paper we propose a model, called positioning model, for estimating a confidence interval of the robot position, in order to compare it with the estimation made by a dead-reckoning system. Both estimations are fused with heuristic rules. The positioning model is useful to estimate the robot position with or without previous knowledge of the previous position. Furthermore, it is possible to define the degree of previous knowledge of the robot position, allowing to make the estimation adaptive by varying this knowledge degree. This model is based on a one-pass neural network which could adapt itself in real time conditions and could learn the relationship between exteroceptive sensors measurements and the robot position.


Palabras clave: First location problem, RTDENN, neural network, continuous mobile robot relocalization.


Fecha de publicación: junio 2002.



Cita:
A. Sánchez, M.A. Sanz-Bobi, Fast Position Estimation for Autonomous Mobile Robot Navigation, 2002 WSEAS Int. Conf. on Signal Processing, Robotics and Automation (ISPRA '02), Cádiz (España). 12-16 Junio 2002.

IIT-02-037A

pdf Solicitar el artículo completo a los autores