Go top
Conference paper information

On the nature of voltage impasse regions in power system dynamics studies

M. Oluic, B. Berggren, F.M. Echavarren, M. Ghandhari, L. Rouco

This paper presents a fundamental study of voltage collapses that occur on a post-fault trajectory of a stressed power system in seconds after large disturbances. The focus of the study are voltage collapses that are induced by certain load models. Using an n-machine-N-bus power system model, the paper explicitly shows that the voltage collapse is caused by the non-existence of a real, positive solution for a load voltage magnitude in different areas of a relative rotor angle space when the load is of non-linear type. These «areas without voltage solution» are denoted as Voltage Impasse Regions (VIR) and are mathematically characterized as trigonometric functions of (n-1) relative rotor angles. Once the post-fault trajectory enters a VIR, voltage magnitude solutions become complex or negative, the algebraic Jacobian becomes singular and the behaviour of a system becomes undefined. The case study has been carried out using a simple 3-machine-1-load system with static load models. In the study, VIR appeared and enlarged as the non-linear (constant power and constant current) load increased. Furthermore, the non-convergence of time domain solution occurred exactly at VIR, thereby confirming that the problem is of structural nature.

Keywords: Load models, power system dynamics, stability assessment, voltage collapse, voltage impasse region

DOI: DOI icon 10.1109/PESGM.2018.8586364    

Published: August 2018.

    Research topics:


Request Request the author to send the document

Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800