Go top
Conference paper information

PEV storage in multi-bus scheduling problems

I. Momber, G. Morales-España, A. Ramos, T. Gómez

Modeling electricity storage to address challenges and opportunities of its applications for smart grids requires inter-temporal equalities to keep track of energy content over time. Prevalently, these constraints present crucial modeling elements as to what extent energy storage applications can enhance future electric power systems’ sustainability, reliability, and efficiency. This paper presents a novel and improvedmixed-integer linear problem (MILP) formulation for energy storage of plug-in (hybrid) electric vehicles (PEVs) for reserves in power system models. It is based on insights from the field of System Dynamics, in which complex interactions between different elements are studied by means of feedback loops as well as stocks, flows and co-flows. Generalized to a multi-bus system, this formulation includes improvements in the energy balance and surpasses shortcomings in the way existing literature deals with reserve constraints. Tested on the IEEE 14-bus system with realistic PEV mobility patterns, the deterministic results show changes in the scheduling of the units, often referred to as unit commitment (UC).


Keywords: Direct load control, mixed-integer linear programming (MILP), multi-bus unit-commitment (UC), plug-in electric vehicles (PEVs), reserves.

Published: July 2014.


    Research topics:
  • *Smart grids
  • *Short-Term Operation, Market Bidding and Operating Reserves
  • *Modeling, simulation and optimization

IIT-14-011A

Request Request the author to send the document



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800