Go top
Conference paper information

Application of Data Mining Techniques to Identify Structural. Congestion Problems under Uncertainty

E.F. Sánchez-Úbeda, J. Peco, P. Raymont, T. Gómez, S. Bañales, A.L. Hernández

This paper proposes a novel methodology to identify congestion problems under both «traditional» and «new» uncertainties such as generation costs, location and size of new generators, retirement of old ones, generation patterns, etc. The methodology allows not only identifying the transmission paths and corridors which will have congestion problems, but also the scenarios producing these critical situations. Thus, it can be used not only to simplify the study of new investments (reinforcement of existing lines), but also to facilitate the evaluation of hedging strategies and the design of proactive policies to avoid the detected congestion.


Keywords: Transmission planning, congestion management, uncertainty, data mining, artificial intelligence techniques, automatic learning, decision trees.

IEEE Power Tech. Conference, Porto, Portugal, 10-13 September 2001

Published: September 2001.


    Research topics:
  • *Forecasting and data mining

IIT-01-028A

Request Request the author to send the document



Aviso legal  |  Política de cookies |  Política de Privacidad

© Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería - ICAI, Instituto de Investigación Tecnológica

Calle de Santa Cruz de Marcenado, 26 - 28015 Madrid, España - Tel: (+34) 91 5422 800