Experimental Characterization of an Active Thermal Wall based on Thermoelectricity (ATW).

Caracterización Experimental de un Paramento Transparente Activo Termoeléctrico (PTA)

Rafael Palacios, Antonio Arenas Alonso, Jorge Vázquez Árias, Francisco Luis Pagola de las Heras, Ramón Rodríguez Pecharromán

Universidad Pontificia Comillas, Madrid, SPAIN
Active Thermal Wall based on Thermoelectricity (ATW)

• Active Thermal Wall
 – Is a heat pump system that uses Peltier effect
 – TE elements are embedded into the panel
 – If the panel is transparent (glass/Plexiglas) it can replace windows

*US and European Patent
Background

• Thermoelectric material are semiconductors that transfer heat if supplied with DC current.

• Advantages over other conditioning technologies:
 – Simple electronic control
 – Absence of fluids, pipes and pumps (just requires electricity)
 – Small size (cooling system embedded in windows/walls)
Prototype

- Small prototype: 105x120mm
- 4 TE chain comprising 16 pellets each
- Chain 10mm, spaced once every 30mm
Numerical Results

• Analytic solution
 – Based on mathematical equations
 – Problem solved using Matlab

• Numerical simulation
 – Based Finite Element models
 – Solved using Ansys
Numerical Results

- Cooling power as a function con electrical current
- Performance of one single pellet at Tc=20ºC and Th=40ºC
- Maximum power for the whole prototype is 0.09x16x4=5.76W
Numerical Results

• The main problem is how to transfer heat from a flat surface to the air
• Thermoelectric power is higher than the natural convection heat transfer
• Conventional glass conductivity is very low
Experimental Results

• A prototype was built and tested at our laboratory
 – Several sensors were installed
 – An IR camera was used
Experimental Results

- External surface of the cold side
- Experimental conditions: $T_h = 25^\circ C$, $I = 4.5A$
- Main results: Temperature on the glass ranging from $9.4^\circ C$ to $17^\circ C$

Temperature map as obtained with the IR camera.
Conclusion

• A small prototype of ATW has been built.
• Numerical tools have been developed to estimate the behavior of larger elements.
• Experimental tests show that the prototype is working properly (\(\Delta T_{\text{max}} = 15^\circ\text{C at 4.5 A}\)).

• Promising technology mainly where installation of conventional equipment is problematic
 – Historic buildings
 – Technical difficulties
 – Esthetic or size restrictions