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Abstract—The liberalization of energy markets and, as
a consequence, the openness of retail energy markets, has
allowed consumers to sign new types of energy contracts
which are subject to uncertainty. To evaluate these con-
tracts, consumers need easily implementable and reliable
tools for the forecast of energy prices. With this purpose in
mind, we propose an original method for the forecast and
scenario generation of natural gas and fuel oil monthly av-
erage prices with an annual scope in Spain. The algorithm
is based on the strong linear correlations existing between
crude oil Brent spot prices and the energy prices to be es-
timated. Thus, the algorithm first generates future Brent
spot price scenarios by sampling from probability distribu-
tions constructed with historical data of Brent futures and
spot prices. An example of the capabilities of the algorithm
is presented for the natural gas and fuel oil price forecast of
2003.

Index Terms—Energy price forecast, scenario generation,
Monte Carlo simulation.

I. INTRODUCTION

N the framework of the current liberalized energy mar-

kets, an industrial consumer who is responsible for en-
ergy contracting decisions is obviously greatly affected by
energy price uncertainty. Thus, he or she must consider
this factor in the decision-making process [1].

In this paper, we present industrial consumers with a
model for representing the natural gas and fuel oil price
uncertainty. This uncertainty is modeled by a scenario
tree to be used as input data in a stochastic optimization
model for supporting decisions related to optimal energy
management.

Stochastic optimization is a very powerful technique for
making decisions since it allows for the representation of
uncertainty associated with the parameters of the problem.
Despite the broad scope of stochastic optimization models,
there has so far been no general methodology established
for the generation of scenario trees. The method to be used
depends greatly on factors such as the optimization model
into which the tree is introduced and the availability of
input data. A summary of different techniques of scenario
generation depending on the available information can be
found in [2].

In our model, the tree generated by the algorithm we
propose is used to feed a two-stage stochastic mixed-integer
linear optimization problem. Since the first-stage variables
(decision variables) are unique for the whole time frame,
the model generates independent time series of fuel prices.

Ideally, the technique to be used for scenario generation
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should obtain a unique solution of the decision variables of
the stochastic optimization problem with any possible sce-
nario tree generated. If several solutions of the stochastic
optimization problem are obtained, it would be convenient
to increase the number of scenarios to be generated despite
increasing the execution time. Nevertheless, the intrin-
sic stability of the solution of the stochastic optimization
problem is independent from the hypotheses posed for the
generation of the scenario tree.

In general, scenario generation is performed by either
advanced stochastic models (e.g. [3]) or time series models
(e.g. [4], [5]) which are used for sampling scenarios.

More sophisticated is the method proposed by Hgylan et
al. [6] for scenario generation. In order to obtain a tree with
certain statistical properties, they use non-linear program-
ming to minimize the square error between the moments
of the marginal distributions of the tree to generate and
those of the distributions entered as data. The resulting
non-linear optimization problem is hard to solve since it
may contain several local minima.

In this model, all of the scenarios are generated simul-
taneously, which makes the method slow if the number
of random variables is high. To overcome this obstacle,
the same authors propose a model [7] in which the tree is
generated decomposing the problem and dealing with each
marginal probability distribution separately.

Another method for scenario generation consists of per-
forming sampling from historical data distributions [8].
This is the easiest method and can especially be applied
when the random variables of interest have the same be-
havior in the past as well as in the future. Following this
technique, Takriti et al. [9] obtain an electricity demand
tree using observations from the past of power plant fail-
ures and deviation in demand forecast under circumstances
similar to those expected in the future.

The mid-term forecast of natural gas and fuel oil prices
for industrial consumers is not an easy task. These prices
depend on hard-to-predict macroeconomic variables which
determine crude oil prices as well as on transportation and
distribution costs. In addition, these prices are influenced
by political decisions, wars, development of alternative en-
ergy sources and other unpredictable factors.

In this paper, we present an original model which takes
advantage of the high correlations between the prices to be
estimated and crude oil Brent prices.

II. PREVIOUS CONSIDERATIONS & HYPOTHESES

In Spain, natural gas prices for consumers are indexed
to Brent spot prices while fuel oil prices are indexed to
different fuel oil market prices. Nevertheless, since fuel oil
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Fig. 1. Monthly average Brent spot prices 1990-2002.

market prices and Brent prices are also highly correlated,
both fuels are estimated by the Brent spot forecast.

In this section, we explain the basics of the Brent spot
price forecast and the characteristics of the technique used
for scenario generation.

A. Brent spot price forecast

The algorithm estimates for each scenario g monthly (pe-
riods k = 1,..,12) natural gas p§ (k) and fuel oil p} (k) prices
with annual scope.

Historical prices of natural gas p,(7) and fuel oil ps()
(with ¢ the period index of historical data) are highly lin-
early correlated with Brent spot prices s(i), and there-
fore the forecast of the prices p§(k) and p}(k) is done
via the estimation of monthly average Brent spot prices
s9(k). Specifically, the correlation coefficients between
pr(i) and s(i — 1), on the one hand, and between pg(i)
and 21;1_7 s(r), on the other hand, are high (above 0.95).
In this way, estimating only Brent spot prices s9(k), the
prices pJ(k) and p“j{(k’) and the correlation between them
are calculated jointly.

To forecast Brent spot prices, in a first approach we rep-
resented Brent historical data s(i) (figure 1) by means of
an ARIMA ! univariate time series model according to the
Box-Jenkins methodology [10]. The results were not satis-
factory. Alternatively, and using solely the Brent spot time
series, a GARCH 2 model could be a possible methodology
to estimate Brent spot prices [10], [11].

Given the difficulty in forecasting Brent spot prices, it
is advisable to take into account additional information to
the Brent spot time series. In this sense, historical Brent
futures prices contain information that can be used for the
Brent spot price forecast s9(k). Pilipovié [12] links both
prices defining the equation:

fr(6) = eI E, [s(0)]

1 AutoRegressive Integrated Moving Average.
2 General Autoregressive Conditional Heteroscedasticity.

(1)
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where the parameter « includes terms such as the risk-free
rate and volatility, the value f,.(¢) represents the Brent fu-
tures price observed in period r with the time of expiration
in period i, and the value E,[s(7)] represents the expected
value of the Brent spot price s(4) in period ¢ observed from
period r.

We tried to determine a function 6 (not necessarily ex-
ponential) to relate historical prices f;_x(¢) and s(¢) for
each period k between 1 and 12 in order to calculate Brent
spot prices with the equation:

s9(k) = 0[fo(k)] + (k) (2)

In this equation, the values fy(k) are Brent futures prices
observed in the month (period 0) previous to the forecast
time frame with expiration in each period of the forecast
scope and therefore are known prices, and the values (k)
are the error distributions derived from the determination
of 6. It was not possible to apply this method since the
prices f;_x(i) and s(%) are not correlated.

Due to the lack of success forecasting mid-term Brent
spot prices, we propose an original methodology based on
the following hypotheses:

o Brent futures prices provide information about Brent

spot prices s9(k) that is useful for the forecast.

o The relation between Brent futures and spot prices in

the past is considered to be the same as in the future.

These hypotheses are consistent with the use of the
algorithm by industrial consumers since the information
needed as input data is easily available in public sources.

B. Scenario tree

The model presented in this paper has been conceived to
represent price uncertainty as input for a stochastic opti-
mization model with a quite large deterministic version [13]
and thus it is advisable to have a reduced number of sce-
narios. Alternatively, it is possible to construct a tree of
any size and apply scenario reduction techniques [14], [15].
Specifically, each node of the tree that the algorithm gen-
erates belongs to only one scenario, with all the scenarios
having the same probability of occurrence.

To generate the price probability distributions to intro-
duce in the scenario tree, it is necessary to identify the
sources of uncertainty in the method stated. These are the
following:

e The error derived from the linear regressions between

fuel oil prices py(i) and Brent spot prices s(¢ —1) on
the one hand, and between natural gas prices p,(7)
and Brent spot prices Z:ﬂ_:ife s(r) on the other hand.

o The error derived from the Brent spot price forecast.

The latter error is significantly greater than the former
and therefore the scenario generation is focused on repre-
senting the uncertainty derived from the Brent spot price
forecast. The error in the linear correlations between Brent
prices and both fuels is neglected.

III. ALGORITHM DESCRIPTION

The Brent spot price forecast is based on the hypothe-
sis that the relative error distributions of Brent spot and
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Generation of the random variables SF(k) from historical

futures prices is the same in the last few years as in the
year of the forecast. Since Brent futures prices are avail-
able for the forecast time frame, spot prices are calculated
from futures prices.

For each period, the moments of the distribution of the
generated samples are compared to those of the error dis-
tributions between historical Brent spot s(i) and futures
fi—i(?) prices so as to validate the values obtained.

The variation of Brent spot prices in consecutive peri-
ods should be reflected in the algorithm since, for instance,
high prices in one period will lead to a higher probability of
high prices in the following period than of low ones. In or-
der to consider the price relation in consecutive periods, the
model uses linear regressions obtained from relative errors
between historical spot and futures prices in consecutive
periods.

The determination of the error distribution of the first
period is done in a different way from those of the other
periods k. To generate the error distribution of the first
period, the Brent spot price in the month preceding the
forecast time frame is taken into account.

Finally, once the Brent spot price scenarios s9(k) are
obtained, the determination of natural gas pj(k) and fuel
oil p?(k) prices is done via the linear regressions that link
Brent spot prices with natural gas and fuel oil prices.

Each of the items in italics mentioned above is explained
in detail below.

A. Price distribution in each period

The relation between Brent spot and futures prices is
defined for each period k by the random variable SF(k),
whose sample space S is composed of the following histor-

ical data:
(i) — fi—x(i) }
fi—r(4)

Figure 2 shows an example of the generation of two val-
ues of each of the distributions SF(1) and SF(2) from his-
torical prices. The graphic on the left represents historical
values in periods ¢ = {—9,—8,—7,—6}. These periods are
numbered in decreasing order starting with the period far-
ther away in time. The last period preceding the forecast
time frame is period 0. Historical Brent prices represented
are spot prices s(7), futures prices f_g(¢) in period —9 for
the following three periods (f—9(—8), f—o(=7), f—9(—6))

S[SF (k)] = { 3)

and futures prices f_g(i) in period —8 for the following two
periods (f_s(=7), f—s(—6)).

In any period 4, for example in period —7, in addition
to the prices s(—7), f_o(—7) and f_g(—7) depicted, there
are historical data of futures prices in previous periods to
period —9 with the time of expiration in period —7. In
this way, the value f_19(—7) is the futures price in period
—10 for period —7, the value f_11(—7) is the futures price
in period —11 for period —7, and so on until we reach the
futures price twelve periods preceding period —7, which is
the value f_19(—7). All these values are not depicted so
as to ease the comprehension of the figure.

With these historical data represented in figure 2, it

is possible to determine the values W and
W (right side of the same figure) of the random

variable SF(1). This variable is a measure of the difference
between futures prices in period k expiring in period &+ 1

and spot prices in period k -+ 1. Similarly, %{:Z;fﬁ)

and % (also in figure 2), belong to the random
variable SF(2).

Using the random variables SF(k) for the Brent spot

price forecast has the following advantages:

o The model takes advantage of the information pro-
vided by Brent futures prices in relation to Brent spot
prices.

« Since the samples from the random variables SF(k)
are normalized, there is no need to apply any type of
discount rate to the current value of money.

e In order to estimate the parameters of the model, no
restrictions are imposed concerning the stabilization of
mean and variance (like in the case of ARIMA mod-
els), which is something desirable given the character-
istics of the Brent spot time series.

As explained in the following sections, the model gener-

ates the samples sf9(k). Given that

s9(k) — fo(k)
fo(k)

and the futures prices fo(k) in period 0 for each of the
forecast time frame periods are known, Brent spot prices
s9(k) can easily be calculated.

To guarantee that the samples generated sf9(k) have the
same statistical properties as the distributions SF(k) ob-
tained from historical data, a deviation measure function is
formulated to compare the moments of both distributions.
This function is

sfO(k) = (4)

> ¢

zZEZ

(5)

my(k) —ml (k) ‘
m (k)

where m, (k) is the moment of order z of the random
variable SF(k) in period k, m/ (k) is the moment of order
z of the samples generated sf9(k) in period k and ¢, is the
weight assigned to each moment. The resulting function is
adimensional, which allows the comparison of moments of
different order.
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Fig. 3. Price relation between periods 1 and 2.

The number of moments z of the distributions SF(k)
which have to be reflected in the scenario tree depends
on how the risk is measured in the stochastic optimiza-
tion model. For instance, with Markowitz mean-variance
models, only the first two moments affect the result of the
problem. The algorithm stated in this work calculates 4
moments: mean, variance, skewness and kurtosis. Never-
theless, by means of the weights ¢, it is possible to assign
the moments different importance in the resulting price
distributions. In order to validate the samples generated
sf9(k), the deviation measure function should be below a
certain threshold (.

B. Price relation in consecutive periods

The observations of the random variables SF(k) rep-
resent Brent futures and spot relative differences in each
of the 12 months of the forecast time frame. These dis-
tributions do not take into account the price relation in
consecutive periods, a factor necessary to determine the
samples sf9(k).

In order to consider the relative error dependency in
consecutive periods (relation between the random variables
SF(k) and SF(k+1)), the following 11 straight lines (k =
2,..,12) are constructed:

sfI(k) = Ap_1sf9(k — 1) + By_1 +%(k — 1) (6)

Each of these lines is obtained through the regression
analysis with the following pair of historical differences:
(S(i)—ffsz(i) S(i“’l)_fi—k(i‘f‘l))

fi—n(i) fi—k (i+1) ’

Brent futures prices used in each pair correspond
to prices in the same period with expiration time
in consecutive periods whereas Brent spot prices cor-
respond to those in one month and the following
one. Going back to the example in the previous sec-
tion with the historical prices represented in figure 2,

the pairs of values (8(7?0);9{:2578), 8(7?;9{:97577)) and
s(=6)—f-s(=6)

(S(*7)*f—s(*7)
f-s(=7)  f-s(=6)
linear relation between samples of the first period sf9(1)

and those of the second period sf9(2) (see figure 3 as well).

) are used to determine the
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The linear regression between the first two periods has the
expression sf9(2) = Aysf9(1) + By +¢e9(1).

By means of the mentioned linear regressions, the model
reflects the relation in consecutive months of Brent spot
and futures prices in period 0 with the time of expiration
in each of the periods of the forecast time frame. For in-
stance, if in period k — 1 the sample sf9(k — 1) has a high
value, the spot price s9(k — 1) will be clearly higher than
the futures price fy(k —1) (see equation 4) and thus the
most likely thing to happen in the following period is that
the value sf?(k) will not change its sign and therefore the
spot price s9(k) will also be higher than the futures price
fo(k). On the contrary, if the sample sf9(k —1) is close to
zero, meaning similar values of the spot s9(k —1) and fu-
tures fo(k —1) prices, the probability of the sample sf9(k)
having a different sign from that of sf9(k —1) is high, and
the spot price s?(k) will be higher or lower than the futures
price fo(k) but probably of similar value.

The adjustment error of the linear regressions is repre-

sented by the empirical distributions of residues e(k — 1).
—6)—f_s(—6 s(=T)—f-s(=7
ol g
B;) and 78(_?__9{:%_7) - (A178(_§)__9{:§§_8) + By) are values
of the random variable €(1).

The generation of error samples is performed by Monte
Carlo simulations using the inverse transformation tech-
nique, in the same way as the sampling from the distribu-
tion SF(1) for the determination of the values of the first
period (next section). This method consists of generating
a value u from the uniform distribution [0,1) and finding
the corresponding value from the error distribution func-
tion Fle(k —1)] so as to obtain an error value €9(k — 1)
equal to F~1[u]. For each value sf9(k — 1), only one sam-
ple of the random variable e(k—1) is obtained since, as said
in section II. B, each node belongs to only one scenario.

Back again to figure 3, =

C. Determination of the relative error distribution of the
first period, sf9(1)

The method described so far is used to obtain the dis-
tribution of spot and futures prices in each period SF(k)
(section A) as well as to obtain the relation that these
prices have to fulfill in consecutive periods, relation be-
tween the distributions SF(k) and SF(k+1) (section B).

The price scenarios determined under these hypotheses
do not consider in a specific manner spot prices in the last
few periods before period 1, the first of the forecast scope.
The historical price distributions SF (k) are formed inde-
pendently of the period in which those prices took place.

In order to consider recent past prices, the Brent spot
price s(0) in the period preceding the first one of the fore-
cast time frame is employed. This price is used for the
generation of the samples of the first period sf9(1), as de-
scribed in this section, whereas the samples sf9(k) of the
other periods are generated according to the criteria ex-
plained in sections A and B.

To determine the relative error sf9(1) between spot and
futures prices in period 1, the algorithm first samples the
values
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o~ $20) = f1(0) 5
Sf (0)‘7 j21<0) (7)

from the distribution function F[SF(1)]. In this distri-
bution, the value %f@(o) is introduced replacing the

closest sample of sf9(0). This introduced value contains
the known Brent spot price s(0) and is used as the root for
the scenario generation.

The samples sf9(0) (including the value %f@(m) be-
long to period 0. To refer them to period 1 (i.e. sf9(1) =
%uff(l)), two transformations are needed:

1. The first one obtains the samples

s9(1) = f-1 (1)
f-1(1)

from s£9(0) via the linear regression that links the ran-

dom variables SF(1) and SF(2) (equation (6) with

k = 2). These values belonging to the distribution

SF(2) correspond to spot prices in period 1 and fu-

tures prices in period -1 for period 1.

2. To relate these samples generated sf’7(1) to the de-
sired sf9(1), a linear regression analysis is done with
the pairs (s(l)f;’;i(*i;(l) , S(Z)f;’?(*ii(l) ). Again with the ex-
ample of the historical data depicted in figure 2, one of

s(=7)—f-o(=7) 5(77)*f—s(*7)).
f-o(=7) f-s(=T7)
These observations relate relative differences between
spot and futures prices in period —7, with the futures
prices being from 1 and 2 preceding periods (periods
—8 and —9 respectively).

The adjustment error in the former regression is reflected
in the distribution of residues €’. For each sample sf9(1),
G values are generated from the distribution function F[e'],
with G the number of scenarios to be obtained. Therefore,
the size of the samples sf7(1) is G- G, and those starting in
5(0)—f-1(0)

f-1(0)
ing to the samples sf9(1). The algorithm generates G - G
scenarios since in each period the samples must behave as
the random variables SF(k) do. Of all these G - G scenar-
ios, only those G which consider the known spot price s(0)
constitute the output of Brent spot prices.

This process as well as the generation of samples in pe-
riod 2 is depicted in figure 4. Circles from period 1 on, rep-
resent the samples sf9(k) obtained from the known value
%f@m). Samples generated in each period sf’(k) are
those depicted as both circles and crosses. The linear re-
gressions which relate values of consecutive periods are also
represented in the figure. The dummy period 1’ contains
the samples sf'9(1) which link values of periods 0 and 1 as
explained in the previous paragraphs.

sf(1) = (®)

these pairs of values is (

period 0 from the value are the ones correspond-

D. Determination of natural gas and fuel oil scenarios

Once the samples sf9(k) are generated, Brent spot price
estimation is immediate through the equation:

3 Index —1 corresponds to 2 periods prior to the first period of the
forecast time frame.

sf*(0) sf'(1)  sP(1),sf°(1)  sf(2),5f°(2)

sf (1) = Aisf*(0) +, s7(2) = Asf’ (1) +,
L B (L) s = Osf (1) 4 B+ (1)

M +D+¢e7 &

£.00) ‘

A § '
'{/:/:E%g/a;
1 | T

0 1 1

Fig. 4. Determination of samples of periods 1 sf9(1) and 2 sf9(2).

s9(k) = fo(k)(1 + 5f(k)) (4)
With these prices, natural gas pj(k) and fuel oil pf(k)
prices are calculated as follows:

k-1
py(k) =FE Z A(r)s9(r)+ F

r=k—6

(9)

and
p?(k) =HMNk—-1)s%(k—1)+L (10)

with A(-) the €/$ exchange rate and E, F, H and L the
parameters of the linear regressions.

IV. SEQUENTIAL FORMULATION

To facilitate the comprehension of the algorithm, its se-
quential formulation is presented below.
1. Generation of the samples sf7(1) of the first period
of the forecast scope.
(a) Generation of the samples sf9(0) from the distri-
bution function F[SF'(1)] with

9(0) — f_1(0)
7100) @)

These values from the random variable SF(1) are
Brent spot prices in period 0 (the one preceding the
first period of the forecast scope) and Brent futures
prices for period 0 observed from the preceding pe-
riod —1.

(b) The observation %’C@(O) is replaced by the sam-
ple of the distribution sf9(0) with the closest value.
In this way, the historical observation from which
the future scenarios are generated is introduced in
the distribution obtained in (a).

(¢) Checking that the generated samples sf9(0) have
the same statistical properties as the distribution

SF(1):

sf7(0) =

> ¢

z2€Z

<<¢ (11)

m(1) — m’z(o)‘
m,(1)

If this inequality is not satisfied, the algorithm goes
back to (a).



(d) From each sample sf9(0) one sample in period 1’

is obtained:

sf'9(1) = Aysf9(0) + By +&7(1) ((6) with k=2)

These samples sf'9(1) belong to the random vari-

able SF'(2) with

s?7(1) = f-1(1)

sf9(1) = FaT)

(e) Futures prices in sf’9(1) are from period -1. To re-
fer them to period 0, the most recent futures prices
before the forecast time frame, the linear regression

sfi(1) =Csf9(1) + D + ¢

is used.

(f) Checking that the generated samples sf7(1) have
the same statistical properties as the distribution

SF(1):
m(1) —m (1)

<¢

20 -0

z€EZ

If this inequality is not satisfied, the algorithm goes

back to (d).

2. Generation of the samples sf7(k) of the remaining

periods of the forecast scope.
(a) From k=2 to 12:

(®)

(12)

(13)

(b) Determination of the samples sf’(k) for each pe-

riod via the linear regressions linking consecutive

periods:

sfi(k) = Ag_18f'(k—1)+ Br_1 +&’(k—1) (6)

(c) Checking that the generated samples sf7 (k) have
the same statistical properties as the distribution

SF(k):
m.(k) —m.(k
Z‘M%‘ <¢

z2€EZ mz )

If this inequality is satisfied, the algorithm goes

(14)

back to (a) while k < 12, otherwise it goes to (b).

3. Calculation of Brent spot prices s9(k).

(a) Among all the samples sf’(k) generated, sf9(k)

contain the Brent spot prices s?(k) coming from

s(0)=f-1(0) (see item 1.(b)):

f-1(0)
s7(k) = fo(k)(L + sf9(k))

(4)

4. Calculation of natural gas pj(k) and fuel oil p% (k)

prices.

(a) Natural gas and fuel oil prices are obtained from

Brent spot prices with the equations:

k-1
py(k) =E Z A(r)sd(r)+ F
r=k—6
and
p?(k) =HMNE-1)s9(k—1)+ L
respectively.

(9)

(10)
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V. CASE EXAMPLE

The algorithm stated in this paper has been imple-
mented in the programming environment MATLAB 6.5.
To demonstrate its performance, we present an example in
which the scenario tree of natural gas and fuel oil monthly
average prices are obtained for 2003. Period 0, the one
preceding the first month of the forecast time frame, is
December 2002.

The liberalization of the natural gas market is now tak-
ing place in Spain. At this point, consumers can choose be-
tween negotiating their contracts with retailers and signing
contracts based on tariffs established by the Government.
Due to this recent market openness, prices of the contracts
in the new framework are indexed to tariffs. These latter
prices represent a reference for the prices of the contracts
under the open market and thus are the natural gas prices
we use as historical data.

Fuel oil prices for large consumers have been liberalized
now for a few years and thus we use historical fuel oil prices
of industrial consumers in the open market as input data
for the model.

The data we have used as input for the forecast comes
from the years 1999-2003. This data contains enough in-
formation to calculate the linear regression between Brent
spot and natural gas prices as well as the linear regression
between Brent spot and fuel oil prices. The correlation co-
efficients obtained in these regressions are high (see Table
IT). In the data from these years, 1999 to 2003, the increase
in mean and variance of Brent spot prices which has oc-
curred in the last few years can be observed (figure 1). In
addition, this period consisting of four years does not con-
stitute a high number of years, since it would be difficult to
reflect future situations in years farther away in the past.

In the proposed example, ten (G = 10) scenarios are
generated. The other configurable parameters correspond-
ing to the deviation measure between the distributions
of historical data SF'(k) and the values generated are:
P1=¢2=1, ¢3= ¢4 =0.2 and ¢ =0.15. The mean and
variance have been weighted more heavily than the other
moments since they are the most important of the distri-
butions. The value for ¢ has been chosen as a tradeoff
between time execution and magnitude of the deviation
measure. Tables I and II depict the correlation coefficients
p of the regressions used in the algorithm.

TABLE 1
CORRELATION COEFFICIENTS OF SAMPLES OF RELATIVE ERRORS
BETWEEN BRENT SPOT AND FUTURES PRICES IN CONSECUTIVE
PERIODS, sf9(k —1) AND sf9(k)

k 2 3 4 5 6 7
P.q | 0.8315 | 0.8579 | 0.8940 | 0.9113 | 0.9359 | 0.9505

k 8 9 10 11 12
Prq | 0.9516 | 0.9553 | 0.9574 | 0.9479 | 0.9436

The price scenarios of Brent spot, natural gas and fuel
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TABLE II
OTHER CORRELATION COEFFICIENTS

Determination Brent spot Brent spot
of period 1 Natural gas Fuel oil
(), () (s"(k), 7(R)) (5" (k). ()

0.7706 0.9897 0.9692
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Fig. 5. Brent spot price scenarios for 2003.

oil obtained for the 2003 forecast are depicted in figures 5,
6 and 7, respectively. The dash-dot lines in these figures
represent average values of the scenarios generated whereas
the solid lines with crosses are the real prices which oc-
curred in 2003. Changes in natural gas prices between con-
secutive periods are smoother than those of fuel oil prices
since the former are estimated through the correlation with
average Brent spot prices over 6 months.

The terms ¢, %&n{z(kw resulting from the deviation

measure for each forecast period are stated in table III.
This table also shows the sum of these terms, whose val-
ues should be below ( to verify that the samples obtained
sfi(k) are distributed according to the random variables

SF(k).

VI. SUMMARY

The model presented in this paper aims at obtaining
a scenario tree of monthly average natural gas and fuel
oil prices as a support for industrial consumers in making
their contracting decisions in liberalized energy markets.
Although the model can be easily adapted to fulfill the
requirement of other countries, it has been developed ac-
cording to the Spanish peculiarities.

The algorithm is conceived to generate a reduced number
of scenarios since this is used as input data for a large two-
stage stochastic optimization model.

First of all, the algorithm performs the Brent price fore-
cast and scenario generation. For this purpose, we propose
an original method based on the use of the relation between
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Fig. 6. Natural gas price scenarios for 2003.
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Fig. 7. Fuel oil price scenarios for 2003.

Brent futures and spot historical prices for the forecast of
future Brent spot prices.

To check that the tree generated has the same statistical
properties as the distributions constructed with historical
Brent futures and spot prices, the moments of the distribu-
tions used as input data and those of the tree generated are
compared. The iteration process ends when the difference
of the moments of the distributions compared is below a
configurable threshold.

Once the Brent spot price tree is generated, linear re-
gressions between Brent spot prices and the desired fuel
prices are employed for the scenario generation of natural
gas and fuel oil prices.

Finally, an example of the forecast and scenario genera-
tion of energy prices for 2003 is presented to demonstrate
how the model works. The results obtained are satisfactory
and reliable for supporting industrial consumer decisions.



TABLE III

k)—m’, (k
TERMS OF THE DEVIATION MEASURE qﬁz‘ ma (k) —m (k) |

m (k)

Total

I
_

z2=2 z2=3 z2=4

.0098 .0786 .0177 .0255 .1316

.0045 .0346 .0392 .0328 L1111

.0481 .0514 .0163 .0240 .1398

.0231 .0581 .0410 .0019 .1241

.0051 .0929 .0099 .0092 L1171

.0121 .1213 .0045 .0081 .1460

.0182 .0722 .0049 .0178 .1131

.0191 .0057 .0319 .0709 .1276

.0443 .0135 .0194 .0643 .1415

Slolo|<|o|u | |w|n ||

.0503 .0139 .0203 .0544 .1389

[
[

.0407 .0318 .0696 .0035 .1456

o|o|o|o|lo|o|o|lo|o|o|o|o] ©
o|o|o|o|o|o|o|o|o|lo|o|o
o|Oo|o|Oo|o|o|o|o|o|o|o|o
o|Oo|o(Oo|o|o|o|o|o|o|o|o
o|lo|lo|o|o|o|o|o|o|o|o|o

=
N

.0376 .0018 .0758 .0061 .1213

[6]

[7]

(8]

(10]

(11]

12]

13]

(14]

(15]
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