ESD.S30
Electric Power System Modeling for a Low Carbon Economy

Hydrothermal scheduling. A case study

Prof. Andres Ramos
http://www.iit.upcomillas.es/aramos/
Andres.Ramos@upcomillas.es
arght@mit.edu

Massachusetts Institute of Technology (MIT). January 2013
Index

1. Introduction

2. Long-term stochastic hydrothermal scheduling model

3. Medium-term simulation model
Introduction
Long-term stochastic hydrothermal scheduling model
Medium-term simulation model
Introduction

• Relevance of hydroelectric power
 – Reduces electric system operation cost
 – High flexibility to integrate intermittent generation
 – Important role in the generation mix

• Objectives of hydro scheduling
 – To optimize the water value in an stochastic environment, fulfilling all the operation constraints (to minimize the operation cost)
 – To analyze and test different scheduling strategies of storage hydro and pumped storage hydro plants
Procedure in two steps

1. Stochastic Hydrothermal Coordination Model (MHE) to deal with a large-scale electric system and with the dimensionality of stochastic hydro inflows
 - Based on Stochastic Dual Dynamic Programming (SDDP)
 - Scope: 2 years. Time step: week. Load levels: peak and off-peak
 - Some hydro details must be simplified in order to reduce the size of the problem

2. Simulation-based model to deal with hydro cascades in a more detailed way
 - Receives the main outputs from the optimization model and performs daily simulations
Introduction

Long-term stochastic hydrothermal scheduling model

Medium-term simulation model

Long-term stochastic hydrothermal scheduling model
MHE model creates DISCHARGE, PUMPING and PRICE TABLES

- Hydrothermal model (Spanish or Iberian Electricity Market)
- Detailed modeling of the hydro system
- Less detailed modeling of demand and the rest of the generation mix
- Representation of inflows through weighted scenario trees

Data for generating the scenario tree:
- Starting date
- Current inflows
- Tree structure
Two-year scope case study

- **Spanish electric system**
 - 118 thermal units
 - 3 main basins with 57 hydro plants and 7 pumped storage hydro plants that operate 39 hydro reservoirs

- **Inflows uncertainty**
 - Recombining tree with 5 branches every 4 weeks: 5^{25} scenarios

![Map of Spain highlighting SIL, DUERO, and TAGUS areas](image_url)
Historical natural hydro inflows in an small reservoir
Historical natural hydro inflows in a medium reservoir
Historical natural hydro inflows in a large reservoir
Optimization process of MHE

Input data
- Demand forecast
- Non dispatchable renewable energy
- Thermal units and their variable costs
- Hydro plants and their cascaded topologies
- Scenario tree with probabilities of inflows

STOCHASTIC OPTIMIZATION

Output results
- For each node it obtains the optimal solution
- Through interpolation methods it obtains multidimensional tables that show the optimal output of hydro power plants depending on
 - Week of the year
 - Level of the reservoir
 - Natural inflows
 - Water reserve in the basin

Hydrothermal scheduling. A case study
Volume and water head in an small reservoir

Hydrothermal scheduling. A case study
Volume and water head in a medium reservoir

Hydrothermal scheduling. A case study
Volume and water head in a large reservoir

![Graph showing volume and water head in a large reservoir]
Volume in an small reservoir

Hydrothermal scheduling. A case study
Volume in a medium reservoir
Volume in a large reservoir
Water release table

Result: water release
for a volume of reservoir 2 = 1609 hm\(^3\)
for week February 9-15.

<table>
<thead>
<tr>
<th>Q(m(^3)/s)</th>
<th>2</th>
<th>181</th>
<th>360</th>
<th>540</th>
<th>719</th>
<th>898</th>
<th>1077</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>188.6</td>
<td>262.0</td>
</tr>
<tr>
<td>47</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>188.6</td>
<td>262.0</td>
</tr>
<tr>
<td>62</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>209.6</td>
<td>262.0</td>
</tr>
<tr>
<td>86</td>
<td>0.0</td>
<td>115.3</td>
<td>136.2</td>
<td>146.7</td>
<td>188.6</td>
<td>209.6</td>
<td>262.0</td>
</tr>
<tr>
<td>108</td>
<td>0.0</td>
<td>115.3</td>
<td>136.2</td>
<td>157.2</td>
<td>188.6</td>
<td>241.0</td>
<td>262.0</td>
</tr>
<tr>
<td>216</td>
<td>19.4</td>
<td>125.8</td>
<td>157.2</td>
<td>178.2</td>
<td>230.6</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>227</td>
<td>21.6</td>
<td>125.8</td>
<td>146.7</td>
<td>178.2</td>
<td>230.6</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>258</td>
<td>28.2</td>
<td>125.8</td>
<td>146.7</td>
<td>188.6</td>
<td>251.5</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>375</td>
<td>53.1</td>
<td>125.8</td>
<td>178.2</td>
<td>209.6</td>
<td>262.0</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>704</td>
<td>78.3</td>
<td>125.8</td>
<td>167.7</td>
<td>241.0</td>
<td>262.0</td>
<td>262.0</td>
<td>262.0</td>
</tr>
</tbody>
</table>

Input: natural inflow

Input: volume of reservoir 1
Water release table (for week 52)
Water release table (for week 7)
System marginal cost

Peak (in red) and off-peak (in blue)
Introduction
Long-term stochastic hydrothermal scheduling model
Medium-term simulation model

Medium-term simulation model
Introduction

- Simulation allows full detail modeling of hydro plant operation
 - Nonlinearities in the production function
 - Specific behavior of river basin elements
- Simulation can produce scheduling plans
 - Closer to real operation
 - With lower computational requirements
Object oriented programming simulation

Five types of nodes (objects) are needed:

- Reservoir
- Canal
- Plant
- Inflow point
- Special objects

Hydro topology is represented by a graph of nodes where each node is an element.
Two kinds of strategies

a) Discharge decision taken from a pre-calculated optimal water release table depending on:
 - Week of the simulated day
 - Natural inflow
 - Volume of the own reservoir
 - Volume of a coordinated reservoir, if needed
 - Table calculated by MHE stochastic hydrothermal model (usually for the main reservoirs of the basin)

b) Discharge decision taken from guiding curves (usually for small reservoirs) depending on:
 - Week of the simulated day
 - Volume of the own reservoir
 - Guiding curves & associated discharges
Water release table

Result: water release for a volume of reservoir 2 = 1609 hm³ for week February 9-15.

<table>
<thead>
<tr>
<th>Q(m³/s)</th>
<th>2</th>
<th>181</th>
<th>360</th>
<th>540</th>
<th>719</th>
<th>898</th>
<th>1077</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>188.6</td>
<td>262.0</td>
</tr>
<tr>
<td>47</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>188.6</td>
<td>262.0</td>
</tr>
<tr>
<td>62</td>
<td>0.0</td>
<td>104.8</td>
<td>125.8</td>
<td>146.7</td>
<td>167.7</td>
<td>209.6</td>
<td>262.0</td>
</tr>
<tr>
<td>86</td>
<td>0.0</td>
<td>115.3</td>
<td>136.2</td>
<td>146.7</td>
<td>188.6</td>
<td>209.6</td>
<td>262.0</td>
</tr>
<tr>
<td>108</td>
<td>0.0</td>
<td>115.3</td>
<td>136.2</td>
<td>157.2</td>
<td>188.6</td>
<td>241.0</td>
<td>262.0</td>
</tr>
<tr>
<td>216</td>
<td>19.4</td>
<td>125.8</td>
<td>157.2</td>
<td>178.2</td>
<td>230.6</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>227</td>
<td>21.6</td>
<td>125.8</td>
<td>146.7</td>
<td>178.2</td>
<td>230.6</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>258</td>
<td>28.2</td>
<td>125.8</td>
<td>146.7</td>
<td>188.6</td>
<td>251.5</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>375</td>
<td>53.1</td>
<td>125.8</td>
<td>178.2</td>
<td>209.6</td>
<td>262.0</td>
<td>262.0</td>
<td>262.0</td>
</tr>
<tr>
<td>704</td>
<td>78.3</td>
<td>125.8</td>
<td>167.7</td>
<td>241.0</td>
<td>262.0</td>
<td>262.0</td>
<td>262.0</td>
</tr>
</tbody>
</table>
Guiding curves
Application case to hydro scheduling (i)

- Two effects studied:
 - Variation of peak and off-peak hourly prices spread
 - Variation of installed thermal capacity
- Realistic case of 9 reservoirs
- Simulation for 24 yearly series
 - Previous generation of production/pumping water release tables for each case
- Results for reservoir yearly operation
Application case to hydro scheduling (ii)

- Effect of the increased price spread among peak and off-peak hours:
 - Narrower reservoir volume evolutions

![Graph showing reservoir volume evolutions over time with real, maximum, upper limit curve, lower limit curve, upper guide, and lower guide lines highlighted.](image-url)
Application case to hydro scheduling (iii)

- Effect of the increased installed thermal capacity
 - Allows free allocation of hydro production
 - Does not need to keep a reservoir volume during summer
Application case to hydroelectric scheme design (i)

- Analysis of investment in new power plants in Douro river
- Example case:
 - Simulation of 24 historical series
 - Unplanned outage rate of 5%
- Assessment of the maximum outflow
 - Power plant with up to 4 units of 200 m3/s and 48 MW
 - Analysis of generation and spilled outflows

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>200</td>
<td>2007</td>
<td>1079</td>
</tr>
<tr>
<td>2a</td>
<td>400</td>
<td>2446</td>
<td>641</td>
</tr>
<tr>
<td>3a</td>
<td>600</td>
<td>2623</td>
<td>464</td>
</tr>
<tr>
<td>4a</td>
<td>800</td>
<td>2725</td>
<td>363</td>
</tr>
</tbody>
</table>
Application case to hydroelectric scheme design (ii)

- Assessment of the maximum outflow
 - Power plant with up to 4 units of 200 m³/s and 48 MW
 - Analysis of results:
 - Generation increase and spillage reduction
 - Allocation of more energy in peak hours

<table>
<thead>
<tr>
<th>Case</th>
<th>Generation energy</th>
<th>Spilled energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total [GWh/year]</td>
<td>Peak [GWh/year]</td>
</tr>
<tr>
<td>1a</td>
<td>155</td>
<td>107</td>
</tr>
<tr>
<td>2a</td>
<td>189</td>
<td>153</td>
</tr>
<tr>
<td>3a</td>
<td>202</td>
<td>178</td>
</tr>
<tr>
<td>4a</td>
<td>210</td>
<td>190</td>
</tr>
</tbody>
</table>
Application case to hydroelectric scheme design (iii)

- Assessment of the number of units (1 to 4):
 - For a fixed outflow of 600 m3/s
 - Should be combined with the economic valuation of investment costs
 - The increase from 1 to 2 units is more significant than the rest of new units installation

```
<table>
<thead>
<tr>
<th>Case</th>
<th>No. of units</th>
<th>Generated flow [hm$^3$/year]</th>
<th>Spilled flow</th>
<th>Generation energy [GWh/year]</th>
<th>Spilled energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1</td>
<td>2454</td>
<td>632</td>
<td>189</td>
<td>49</td>
</tr>
<tr>
<td>2b</td>
<td>2</td>
<td>2610</td>
<td>478</td>
<td>201</td>
<td>37</td>
</tr>
<tr>
<td>3b</td>
<td>3</td>
<td>2615</td>
<td>473</td>
<td>202</td>
<td>36</td>
</tr>
<tr>
<td>4b</td>
<td>4</td>
<td>2659</td>
<td>428</td>
<td>205</td>
<td>33</td>
</tr>
</tbody>
</table>
```
Conclusions

• Medium term simulation model
 – Connected to long-term stochastic hydrothermal model
 – Considers detailed operation
 – Stochastic inflows and outages

• Application case to hydro scheduling
 – Provides feasible operation
 – Different operation criteria

• Application case to hydro scheme design
 – Considering several options about installed units
 – Unplanned outage sampling