Simulation Application to Hydropower Systems Management and Design in a Market Environment

J. M. Latorre, A. Ramos, S. Cerisola (IIT)
A. Perea, R. Bellido, E. López (Iberdrola)

EEM10 - Madrid
June 24 2010
Contents

- Introduction
- Simulation model
- Application cases:
 - Hydro scheduling
 - Hydroelectric scheme design
- Conclusions
Introduction

- Relevance of hydroelectric power
 - Reduced production cost
 - High flexibility
 - Important role in the generation mix
- Simulation allows full detail modeling of operation:
 - Nonlinearities in the production function
 - Specific behavior of river basin elements
- Simulation can produce scheduling plans
 - Closer to real operation
 - With lower computational requirements
Simulation model (I)

- Medium term simulation model
 - Coupled with a long term model stochastic hydrothermal (MHE)

- Possible applications:
 - Hydro scheduling
 - Hydroelectric scheme design support
 - Scheduling of planned outages
 - Specific studies like reliability analysis
Simulation model (II)

- Sequential simulation model:
 - Discrete time, with daily step
 - Yearly time scope
 - Stochastic hydro inflows and unexpected outages
 - Considers different elements: reservoirs, power plants and channels

- Simulation method divided into several phases:
 - First, individual management of each element
 - Computes possible actions of each element to avoid problems (spills and lack of water for release agreements)
 - Applies corrective actions where they are needed
Simulation model (III)

- Initial reservoir scheduling:
 - Initially water released from production / pumping lookup tables
 - Checked against:
 - Technical limits (i.e. partial outages)
 - Water agreements (ecological or entertainment needs)
 - Operation areas delimited by volume guiding curves

![Reservoir volume chart](chart.png)
Simulation model (IV)

- Power plant initial management:
 - Forced outages during scheduled dates
 - Unplanned outages sampled independently for each day
 - Recent development: bathtub curve
Application to hydro scheduling (I)

- Realistic case of 9 reservoirs
- Two effects studied:
 - Variation of peak and off-peak hourly prices spread
 - Variation of installed thermal capacity
- Simulation for 24 yearly series
 - Previous generation of production / pumping lookup tables for each case
- Results for yearly operation reservoir
Application to hydro scheduling (II)

- Effect of the increased price spread among peak and off-peak hours:
 - Narrower reservoir volume evolutions
Application to hydro scheduling (III)

- Effect of the increased installed thermal capacity:
 - Allows free allocation of hydro production
 - Does not need to keep a reservoir volume during summer
Example case:
- Simulation of 24 historical series
- Unplanned outage rate of 5%

Assessment of the maximum outflow:
- Power plant with up to 4 units of 200 m³/s and 48 MW
- Analysis of generation and spilled outflows

<table>
<thead>
<tr>
<th>Case</th>
<th>Maximum output flow [m³/s]</th>
<th>Generation flow [hm³/year]</th>
<th>Spilled flow [hm³/year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>200</td>
<td>2007</td>
<td>1079</td>
</tr>
<tr>
<td>2a</td>
<td>400</td>
<td>2446</td>
<td>641</td>
</tr>
<tr>
<td>3a</td>
<td>600</td>
<td>2623</td>
<td>464</td>
</tr>
<tr>
<td>4a</td>
<td>800</td>
<td>2725</td>
<td>363</td>
</tr>
</tbody>
</table>
Application to hydroelectric scheme design (II)

- Assessment of the maximum outflow:
 - Power plant with up to four units of 200 m3/s and 48 MW
 - Analysis of results:
 - Generation increase and spillage reduction
 - Allocation of more energy in peak hours

<table>
<thead>
<tr>
<th>Case</th>
<th>Generation energy</th>
<th>Spilled energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Peak [GWh/year]</td>
</tr>
<tr>
<td>1a</td>
<td>155</td>
<td>107</td>
</tr>
<tr>
<td>2a</td>
<td>189</td>
<td>153</td>
</tr>
<tr>
<td>3a</td>
<td>202</td>
<td>178</td>
</tr>
<tr>
<td>4a</td>
<td>210</td>
<td>190</td>
</tr>
</tbody>
</table>
Application to hydroelectric scheme design (III)

- Assessment of the number of units (1 to 4):
 - For a fixed outflow of 600 m³/s
 - Should be combined with the economic valuation of investment costs
 - The increase from 1 to 2 units is more significant than the rest of new units installation

<table>
<thead>
<tr>
<th>Case</th>
<th>No. of units</th>
<th>Generated flow [m³/year]</th>
<th>Spilled flow</th>
<th>Generation energy Total [GWh/year]</th>
<th>Peak [GWh/year]</th>
<th>Off-peak [GWh/year]</th>
<th>Spilled energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1</td>
<td>2454</td>
<td>632</td>
<td>189</td>
<td>158</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>2b</td>
<td>2</td>
<td>2610</td>
<td>478</td>
<td>201</td>
<td>177</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>3b</td>
<td>3</td>
<td>2615</td>
<td>473</td>
<td>202</td>
<td>178</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>4b</td>
<td>4</td>
<td>2659</td>
<td>428</td>
<td>205</td>
<td>180</td>
<td>25</td>
<td>33</td>
</tr>
</tbody>
</table>
Conclusions

- Medium term simulation model
 - Considers detailed operation
 - Connected to longer term stochastic hydrothermal model
 - Stochastic inflows and outages

- Application to hydro scheduling
 - Provides feasible operation
 - Different operation criteria

- Application to hydro scheme design
 - Considering several options about installed units
 - Unplanned outage sampling