Stochastic Dual Dynamic Programming
Applied to Nonlinear Hydrothermal Models

Santiago Cerisola
Jesús M. Latorre
Andrés Ramos

ISMP Meeting 2009
Chicago
Contents

• Introduction

• Nonlinear constraints reformulation
 – McCormick envelope for bilinear terms
 – Disjunctive programming

• Stochastic Dual Dynamic Programming
 – Two Stage Algorithm
 – Multistage stochastic algorithm

• Case Study and Numerical Results

• Conclusions
Introduction

- **Linear** hydrothermal model
 - Minimize total operating cost while satisfying demand for power
 - Constant hydro production function
- **Advantages**
 - Possibility of using LP-solvers
 - Monotonically decreasing and convex water value function
 - Solutions of large-scale stochastic models using decomposition techniques
- **Disadvantage**
 - Multiplicity of solutions for reserve profiles
 - Inadequate profiles
Introduction

- A non linear hydrothermal model
 - Non constant hydro production function
 - Increases the production of the hydro plant with the head of the reservoir
- The hydro production function
 - Power (MW) = Water discharge (m3/s) \cdot Head (m) \cdot Efficiency of hydro unit (head)
Introduction

- A non linear hydrothermal model
 - Non constant hydro production function
 - Increases the production of the hydro plant with the head of the reservoir
- The hydro production function
 - $\text{Power (MW)} = \text{Water discharge (m}^3/\text{s}) \cdot \text{Head (m)} \cdot \text{Efficiency of hydro unit (head)}$

$$P = q \cdot h \cdot \eta(h)$$

Simplification as an affine function

$$P = q(\alpha + \beta h)$$
Introduction

- **Bilinear relations** for modeling hydro production functions
 - Forces the use of nonlinear solvers
 - Possibility of stacking in a local minima
 - More computation time
 - Nonconvex recourse function
 - Difficulty of applying decompositions techniques
 - Difficulty of solving the stochastic problem
- **Example** of nonconvex recourse function
Introduction

Cost

Reserve level
Introduction

¿How to extend the Stochastic Dual Dynamic Programming decomposition technique to deal with this situation?
Nonlinear constraints reformulation

- Reformulate the bilinear terms using **McCormick reformulation**

\[
\begin{align*}
 z &= xy \\
 z &\geq x\bar{y} + \bar{x}y - \bar{x}y \\
 z &\geq xy + \underline{x}y - xy \\
 z &\leq x\bar{y} + xy - xy \\
 z &\leq xy + \bar{x}y - \bar{x}y
\end{align*}
\]

- Enables the use of **LP solvers**
Nonlinear constraints reformulation

Hydro production function

Water discharge

$\times 10^8$

0

0.5

1

1.5

2

2.5

3

3.0

250

50

100

200

300

500

800

1000

Stochastic Dual Dynamic Programming applied to Nonlinear Models
Nonlinear constraints reformulation
Nonlinear constraints reformulation
Nonlinear constraints reformulation

![Graph showing water discharge and hydro production function]
Nonlinear constraints reformulation
Nonlinear constraints reformulation

- A single McCormick envelope can be insufficient
- Construction of a grid for the variables of the bilinear relation
- Construction of the McCormick envelope for each rectangle of the grid
- **Disjunctive programming** forces the model to select just one tetrahedron out of the total
- Mathematical formulation using **binary variables** and a **big-M approach**
Nonlinear constraints reformulation

\[
\begin{align*}
 z &\geq x y^m + x^n y - u^{n,m} x^n y^m - (1 - u^{n,m}) K_{1}^{n,m} \\
 z &\geq x y^m + x^n y - u^{n,m} x^n y^m - (1 - u^{n,m}) K_{2}^{n,m} \\
 z &\leq x y^m + x^n y - u^{n,m} x^n y^m - (1 - u^{n,m}) K_{3}^{n,m} \\
 z &\leq x y^m + x^n y - u^{n,m} x^n y^m - (1 - u^{n,m}) K_{4}^{n,m}
\end{align*}
\]

- We determine the most accurate big-M values that enter in above constraints
Nonlinear constraints reformulation
Nonlinear constraints reformulation
Stochastic Dual Dynamic Programming

- **Multiperiod**
- **Stochasticity given by means of a recombining tree**

\[
\begin{align*}
\min z &= c^1 x^1 + E_{\xi^2} \left[\min c^2 x^2 + E_{\xi^3} \left[\min c^3 x^3 + \cdots \right] \right] \\
A x^t &\leq b^t \quad t : 1, \ldots, T \\
B^t (x^t) &= d^t \quad t : 1, \ldots, T \\
T x^t + W^{t+1} x^{t+1} &= h^{t+1}(\xi^{t+1}) \quad t : 1, \ldots, T - 1
\end{align*}
\]
Stochastic Dual Dynamic Programming

• **Traditional decomposition** in master problem and subproblem

Master Problem

\[
\begin{align*}
\min \ z &= c^1 x^1 + E_{\xi^2} \left[Q^1 (x^1, \xi^2) \right] \\
\text{s.t.} : \ A x^1 &\leq b^1, \ B^1 (x^1) = d^1
\end{align*}
\]

Subproblem

\[
Q^{t-1} (x^{t-1}, \xi^t) = \min c^t x^t + E_{\xi^t} \left[Q^t (x^t, \xi^{t+1}) \right] \\
Ax^t &\leq b^t \\
B^t (x^t) &= d^t \\
Wx^t &\leq h(\xi^t) - T x^{t-1}
\]

Primal Proposals

Outer approximations
Stochastic Dual Dynamic Programming

\[
Q^{t-1}(x^{t-1}, \xi^t) = \min c^t x^t + E_{\xi^t} [Q^t(x^t, \xi^{t+1})]
\]
\[
A x^t \leq b^t
\]
\[
B^t(x^t) = d^t
\]
\[
Wx^t \leq h(\xi^t) - T x^{t-1}
\]

Bilinear relations
Nonlinear subproblem
Non convex recourse function

\[
Q^{t-1}(x^{t-1}, \xi^t) = \min c^t x^t + E_{\xi^t} [Q^t(x^t, \xi^{t+1})]
\]
\[
A x^t \leq b^t
\]
\[
M x^t = d^t
\]
\[
Wx^t \leq h(\xi^t) - T x^{t-1}
\]

MCormick refomulation
Linear subproblem
Convex recourse function
Slack approximation

\[
Q^{t-1}(x^{t-1}, \xi^t) = \min c^t x^t + E_{\xi^t} [Q^t(x^t, \xi^{t+1})]
\]
\[
A x^t \leq b^t
\]
\[
M x^t + N u^t = d^t
\]
\[
Wx^t \leq h(\xi^t) - T x^{t-1}
\]

MCormick surface
MIP subproblem
Non convex recourse function
Tight approximation
Stochastic Dual Dynamic Programming

- Convexification of the recourse function using Lagrangean Relaxation

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(x^{t-1}, \xi^t, \lambda^t) = \min c^t x^t + E_{\xi^t} [Q^t (x^t, \xi^{t+1})] + \lambda^t (T x^{t-1} + W x^t - h(\xi^t))$</td>
<td>Nonlinear Subproblem</td>
</tr>
<tr>
<td>$A x^t \leq b^t$</td>
<td>Local Minima</td>
</tr>
<tr>
<td>$B^t (x^t) = d^t$</td>
<td></td>
</tr>
<tr>
<td>$w(x^{t-1}, \xi^t, \lambda^t) = \min c^t x^t + E_{\xi^t} [Q^t (x^t, \xi^{t+1})] + \lambda^t (T x^{t-1} + W x^t - h(\xi^t))$</td>
<td>MIP Subproblem</td>
</tr>
<tr>
<td>$A x^t \leq b^t$</td>
<td>Use the Best Bound</td>
</tr>
<tr>
<td>$M^t x^t + N u^t = d^t$</td>
<td></td>
</tr>
</tbody>
</table>
Stochastic Dual Dynamic Programming

- We adopt the reformulation given by the McCormick Surface for the convexification routine
- We avoid the large number of Lagrangean Relaxation iterations for the optimization of the dual function
- We chose a proper multiplier and perform just one evaluation of the Lagrangean subproblem
 - Heuristic 1. Solution of the McCormick envelope subproblem and obtain the dual variable of the coupling constraints. Set the optimal multiplier
 \[\lambda^t = -\pi^t \]
 - Heuristic 2. Combine the coefficients of previously computed Benders cuts to create the proper multiplier
Stochastic Dual Dynamic Programming

- An example for a two stage situation
Stochastic Dual Dynamic Programming

- An example for a two stage situation
Stochastic Dual Dynamic Programming

- An example for a two stage situation
Stochastic Dual Dynamic Programming

• An example for a two stage situation
Stochastic Dual Dynamic Programming

- Description of the multistage situation
- Forward pass
 - Sample a scenario (path from the root through the tree)
 - Solve each node of the scenario (MIP subproblem)
 - Store the primal solution and the coefficients of the active Benders cuts
Stochastic Dual Dynamic Programming

- Description of the multistage situation
- Backward pass
 - Solve each node of each period
 - Create the proposed multiplier
 - Evaluate the Lagrangean subproblem (MIP)
 - Store the objective function and create a new Benders cut
Stochastic Dual Dynamic Programming

- Stopping criteria
 - Lower Bound: solution of the root node
 - Upper Bound: random variable. Estimation after n scenarios together with a confidence interval

\[
\bar{z} = \frac{1}{N} \sum_{t=1}^{T} c_t(x_t^{\xi})^n \quad \sigma_n = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\sum_{t=1}^{T} c_t(x_t^{\xi})^n - \bar{z} \right)^2}
\]

\[
I = \left(\bar{z} - \frac{1.96}{\sqrt{N}} \sigma_n, \bar{z} + \frac{1.96}{\sqrt{N}} \sigma_n \right)
\]

- Stopping rule:
 - Lower bound within the confidence interval
 - Confidence interval with a given tolerance
Case Study

- **Real size** hydrothermal coordination problem
- **One year** planning horizon
- **Weekly** period representation
- 84 thermal units
- 24 hydro plants
- 3 basins and multiple **cascade reservoirs**
- Recombining scenario tree created with **clustering techniques**
- Approximation of the bilinear relation with the McCormick surface with different pieces for the hydro production variable and the water discharge variable
Case Study

- Practical implementation of the decomposition method
- Phase 1
 - Forward and backward solution of the linear relaxation of the node subproblems
- Phase 2
 - Forward solution of the linear relaxation of the node subproblems.
 - Backward solution of Lagrangean subproblem evaluations. Multiplier proposed combining the coefficients of the active cuts in the forward pass (heuristic 2)
- Phase 3
 - Forward solution of the MIP subproblems.
 - Backward solution of the Lagrangean subproblem evaluations using heuristic 1
Case Study

- Convergence evolution
Case Study

<table>
<thead>
<tr>
<th>Branching</th>
<th>Sc</th>
<th>Lower</th>
<th>Upper</th>
<th>Interval</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 4 weeks</td>
<td>2^{12}</td>
<td>7821.0</td>
<td>7817.7</td>
<td>[7803.5, 7831.9]</td>
<td>0.0036</td>
</tr>
<tr>
<td>Every 2 weeks</td>
<td>2^{25}</td>
<td>7828.0</td>
<td>7839.3</td>
<td>[7826.4, 7852.2]</td>
<td>0.0033</td>
</tr>
<tr>
<td>Every 1 week</td>
<td>2^{51}</td>
<td>7839.0</td>
<td>7850.3</td>
<td>[7831.6, 7868.9]</td>
<td>0.0047</td>
</tr>
<tr>
<td>Every 4 weeks</td>
<td>3^{12}</td>
<td>7828.6</td>
<td>7830.8</td>
<td>[7791.7, 7869.9]</td>
<td>0.0099</td>
</tr>
</tbody>
</table>
Case Study: Evolution of the reserve profiles
Conclusions

• Extension of the Stochastic Dual Dynamic Programming algorithm for nonlinear subproblems reformulated as MIP subproblems
• Remarkable results for the hydrothermal coordination problem. Acceptable reserve profiles
• Future developments
 – Sensitivity analysis for the uncertainty representation and the grid precision for the McCormick Surface
 – Adjust the stopping rule criteria with the theory developments in literature
 – Incorporate variance reduction techniques to reduce the computation time
 – Explore the possibility of performing the algorithm by solving small recombining subtrees during the iterations
 – Risk constraints for risk control of spillages
Stochastic Dual Dynamic Programming
Applied to Nonlinear Hydrothermal Models

Santiago Cerisola
Jesús M. Latorre
Andrés Ramos

ISMP Meeting 2009
Chicago